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Introduction 

Manually diagnosing mechanical faults is highly laborious, and a lack of strategies to intuitively 

explain model decisions has precluded effective automated diagnosis by unsupervised systems. To 

remedy this, we propose an objectively interpretable probabilistic framework for analysing time-

series data in grinding, using a Gaussian mixture model (GMM) trained only on normal processes 

to assign likelihoods to each 50-ms segment of a grinding signal. A dashboard visualises these 

likelihoods in sequence, showing where during a process anomalies crop up and yielding diagrams 

that could expedite visual fault diagnosis. Anomalous grinding runs are objectively defined by 

deviations from normal training data, facilitating predictive maintenance. We show that our 

framework allows various simple GMM-based architectures to outperform a more complex 

recurrent one in stability of F2-scores on small training samples with simulated anomaly data. 

Motivating Explainable Unsupervised Methods for Anomaly Detection 

Grinding machines, or grinders, are widely used in various industries and rely on an abrasive wheel 

to bring about very precise changes to workpiece surfaces. Anomalies arise when a grinder behaves 
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atypically, which could be manifested in defective workpieces, unusual patterns in energy 

consumption, or acoustic emissions (Lopes et al., 2018). Crucially, anomalies often indicate deeper 

mechanical faults that could, if left unattended to, lead to machine damage and production delays 

costing tens of thousands of euros (Kaufmann et al., 2020).  

As the same type of anomaly may have different causes (Griffin et al., 2017), unguided manual 

inspection of machine parts to find the root cause of problems is generally laborious and time-

consuming. This necessitates methods that clearly show what features in the grinding signal are 

deviant and may represent a fault in which parts of the machine. 

In addition, real anomaly data is very scarce (Pang et al., 2021) and impractical to exhaustively 

simulate through costly methods such as nital etching. As unsupervised methods only need normal, 

i.e. non-anomalous, data for training, they are preferable to those that work with labelled data.  

Related Work 

Unsupervised anomaly detection methods for grinding and other time-series data commonly 

implicate various flavours of autoencoder and recurrent neural networks (RNNs), gated recurrent 

units (GRUs) in particular (Choi et al., 2021). Both learn meaningful representations of normal 

data in order to detect deviations in new data but have different strengths. Autoencoders excel at 

dimensionality reduction and anomaly detection using reconstruction distance (cf. Kieu et al., 

2021), while RNNs crucially take into account temporal dependencies in their encodings.  

Nevertheless, being black-box models, the decisions of both autoencoders and RNNs are not 

inherently interpretable. Existing strategies to improve the explainability of these models mainly 

concentrate on estimating feature contributions to decisions. The best known might be SHapley 
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Additive exPlanations (SHAP, Lundberg & Lee 2017) and Local Interpretable Model-agnostic 

Explanations (LIME, Ribeiro et al., 2016), which visualise feature weights in a model-agnostic 

fashion. However, their outputs are open to subjective interpretation (Li et al., 2023) and require 

extensive postprocessing to be actionable. This prevents current explainability methods from 

directly facilitating fault diagnosis (cf. Theissler et al., 2022). 

What holds more promise for interpretable fault diagnosis is the fact that autoencoders and GRUs 

have been combined with GMMs to excellent effect in time-series anomaly detection (e.g. Zong 

et al., 2018, Serradilla et al., 2021, Zhu et al., 2023). The probabilistic properties of GMMs can be 

used to objectively define anomalies based on reconstruction distance. Unfortunately, the intrinsic 

interpretability of such an approach has not been sufficiently exploited for diagnostic purposes. 

In addition, to our best knowledge, the complex architectures named above have not been 

evaluated on whether they are too computationally demanding for real-time use and how effective 

they would be on small training samples. Real-time fault detection is preferable because the lags 

involved in offline methods may allow underlying problems to worsen unnoticed. Also, modestly 

sized training samples enable the system to be retrained for use on different machines for scaling 

up, without first necessitating large amounts of training data from those machines being collected. 

This Study 

In the light of the above, we propose a GMM-based system that analyses grinding signals one 

segment at a time, capitalising on the explainability inherent to the probabilistic approach for visual 

fault diagnosis. Making our case using a convolutional autoencoder (CAE)-GMM, we show that 

this system can be coupled with various relatively simple architectures for real-time fault detection 

with modest training sample sizes, outperforming more complex state-of-the-art models. 
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Problem Statement 

Each grinding run is represented by a sequence of unlabelled tensors containing three features each 

(x1, x2, x3). Our anomaly detection system needs to be trained on tensors from normal grinding runs 

to learn a threshold separating such normal runs from deviant, i.e. anomalous, ones. The system 

will then be evaluated on labelled data consisting of tensors with the same three features, 

represented as (x1, x2, x3, n), where n is the class label (0 for ‘normal’ and 1 for ‘anomalous’).  

The ultimate goal is to minimise cross-entropy loss, i.e. to make as few wrong predictions as 

possible where the predicted (ŷ) and actual labels (y) match given the input features x:  

𝑦" = arg min
!∈{$,&}

−[𝑦 log 𝑦" −	(1 − 𝑦)	 log(1 − 𝑦")] 

Background on Data  

Our data comes courtesy of a large engineering company. It consisted of 258 pairs of acoustic 

emissions (AE; sampling rate 100 KHz, 1 channel) and electrical current (EC; 2000 KHz, 4 

channels) recordings from a Tschudin-T25 grinder used to produce diesel injection valves. Each 

AE-EC pair pertained to the same grinding run, with all recordings in PARQUET format.  

229 pairs of recordings reflected normal runs, while only 29 were of a simulated anomaly. The 

simulated anomaly data was recorded with the screws of the grinder’s rollers adjusted in order to 

approximate roller failure. It was linearly separable from the normal class, which the literature 

suggests is not realistic (cf. Rameshkumar et al., 2021). Hence, a balanced validation set 

comprising 5 normal and 5 anomalous pairs of recordings was used to fine-tune only the number 

of input features. Other hyperparameters (anomaly thresholds, segment length, number of layers) 
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were decided independently to avoid overfitting on the simulated roller failure data. However, we 

still involve recall as a proxy for model performance later for want of more accurate data.  

AE recordings were made using a Kistler Piezotron type 8152C1 sensor on the machine’s tailstock. 

Three of the four channels in the EC recording correspond to input from a Chauvin Arnoux 

MN39AS current clamp, one for each cable of the three-phase grinder, while the fourth is the root 

mean square (IRMS) of these currents. We only used the IRMS channel of the EC recordings. 

Example Implementation of Our Visual Fault Diagnosis System with a CAE-GMM 

Data Preprocessing 

In line with the structure of our data, our system assumes that each grinding run is represented by 

one pair of AE and EC recordings of the same length. Each AE-EC pair is aligned and split into 

an equal number of temporally matching 50-ms segments. We extract three features from all paired 

segments, AE variance and energy, and EC energy. The variance of a segment is the mean squared 

difference of all its data points from the segment mean, while energy is the sum of the squared 

data points in a segment. These features are normalised, then stored in one tensor representing a 

50-ms timestep. Should paired recordings be of unequal length, segments beyond the last one of 

the shorter recording are discarded. Using only a small number of named features will contribute 

to interpretability of model decisions later.  

Despite being correlated, these features were selected because AE RMS (derived from variance) 

and energy are both important to quantifying wear in grinders (Rameshkumar et al., 2021), and 

EC energy is less correlated with the AE features than is EC variance. To address the correlation, 

we add a CAE on top of a GMM for our example implementation, to which we now turn.   
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Figure 1. How AE and EC recordings are segmented and 3 features extracted  

 

Add-on Module – The Convolutional Autoencoder (CAE)  

As mentioned, the CAE module disentangles correlated features in the input tensors. In the training 

phase, this allows normal training data to form a spherical cluster in 3D, optimising learning by 

the GMM in the next module. The decorrelation is achieved using an encoder-decoder architecture:  

 
Figure 2. Simplified representation of our CAE module showing dimensions per layer 

The encoder, consisting of three 1D convolutional layers with ReLU activations, transforms the 

1D input into a 2D representation at the bottleneck layer. This process can be mathematically 

represented as follows, with h(l) standing for the lth hidden layer, W(l) the weights matrix of that 

layer and b(l) the bias being applied to h(l-1), the immediately preceding hidden layer:  

ℎ())  =  ReLU 9Conv1D=ℎ()+&) ,  𝑊()) ,  𝑏())AB 
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The decoder subsequently reconstructs the original input from the encoded representation using 

the same architecture as the encoder but in reverse, the reconstructions marked with a hat:  

ℎ())C = ReLU DConv1D9ℎ()+&)E ,𝑊())E,𝑏())C BF 

The optimisation objective is to minimise the mean squared error (MSE) between the original (𝑥!) 

and reconstructed segments (𝑥"!), ensuring that the 2D encodings generated by the encoder are an 

accurate representation of the original inputs:  

min
,
𝑀𝑆𝐸 ,𝑤ℎ𝑒𝑟𝑒	𝑀𝑆𝐸	 =  

1
n
 M(𝑥-   −  𝑥.O)/
0

12&

  

With the Adam optimiser, the CAE trains for 100 epochs at a learning rate of 0.001. 

Core Module – The Gaussian Mixture Model (GMM)  

The GMM module processes the 2D encoded representation from the CAE. In the training phase, 

its chief purpose is to learn the distribution of the encoded normal segments, minimising the 

negative log-likelihood scores of those segments and classing those with scores in the 97.5th 

percentile as anomalous. For testing, it assigns scores to and labels as anomalous new segments 

above the threshold 97.5th-percentile score it learnt from the distribution of normal segments.  

Our GMM has a full-rank covariance matrix, allowing it to capture the correlations of all 

combinations of encoded features. It only contains one mixture component, in line with our task 

to differentiate one type of normal data from all types of anomalous data. With only one 

component, the probability density function of the d-dimensional input vector ( 𝐱 ) coming from a 

Gaussian distribution with mean vector ( 𝛍 ) and covariance matrix ( 𝚺 ) is given by:  
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𝑝(𝐱) = 𝒩(𝐱 ∣∣ 𝛍, 𝚺 ), where 𝒩(𝐱 ∣∣ 𝛍, 𝚺 ) = "
($%)!/#|𝚺|$/#

exp 0− "
$
(𝐱 − 𝛍))𝚺*"(𝐱 − 𝛍)2. 

Postprocessing 

After having been assigned negative log-likelihood scores by the GMM, segments representing 

the same grinding run are regrouped and the proportion of anomalous segments in each training 

sample is measured. During training, the proportions in the normal data are recorded and stored as 

an array. Grinding runs with a higher proportion of anomalous segments than 99.99% of the normal 

training data – our second threshold – are classed as anomalous runs. As a note, both this and the 

first threshold are inspired by standard p-value thresholds for statistical significance. 

In the testing phase, new segments are passed through the CAE and GMM modules, assigned 

negative log-likelihood scores and labelled anomalous where they are more positive than 97.5% 

of the normal training segments, then regrouped by grinding run. The proportions of anomalous 

segments in each grinding run are compared against the array of proportions learnt during training 

– again, runs having a higher proportion than 99.99% of the normal training runs are flagged as 

anomalous runs based on this objective threshold. Finally, a dashboard visualises the negative log-

likelihood scores output by the GMM, as the next section will demonstrate. 

Visualisation of Anomaly Scores with a Dashboard 

The negative log-likelihood scores returned by the GMM for each segment are visualised in real 

time as bars by a dashboard in sequential order. Non-anomalous scores below the 97.5th percentile 

of normal training data are concentrated below the horizontal axis and marked grey, while 

anomalous ones are invariably above that axis and coloured red. The length of each bar 
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corresponds to the absolute value of the score. Normal grinding runs thus look much as in Figure 

3, with most segments represented by grey bars extending downwards from the horizontal axis: 

 
Figure 3. A normal grinding process with a preponderance of grey bars below the 

horizontal axis  
For interpretability, two values are returned for each grinding sample used for testing – first, the 

proportion of anomalous segments – as defined during the training phase – in the sample and 

second, the percentage of normal training data that the test sample has a higher proportion of 

anomalous segments than – runs the system labels anomalous are stated to contain ‘more 

anomalous segments than 100% of the normal training data’. The latter is designed to facilitate 

predictive maintenance, as steadily increasing percentiles could indicate wear warranting attention. 

Potential for Visual Fault Diagnosis 

In contrast to the normal grinding run pictured in Figure 3, anomalous runs featuring simulated 

roller failure consistently showed red bars, marking highly anomalous segments, extending far 

upwards from the horizontal axis in the final quarter of the run. Figure 4 shows two examples: 

 
Figure 4. Two runs with simulated roller failure, showing long red bars in the last quarter 
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The red bars visible in Figure 4 were in fact of such magnitude as to render the foregoing grey 

bars, representing normal segments, barely visible. This consistent visual signature associated with 

all 29 simulated anomalies in our dataset may imply that other types of grinding anomaly 

implicating different parts of the machine could take on distinct shapes when visualised this way. 

Though speculative, this could massively expedite the diagnosis of mechanical faults if correct. 

Experiment Comparing Explainable Architectures 

Objectives 

Having shown that a CAE-GMM is one possible implementation of our system, we now compare 

its performance against five other architectures whose outputs are amenable to the exact same type 

of visualisation. This is meant to show how compatible our objectively interpretable system is with 

different explainable architectures, and what level of complexity it requires of these models. 

Baseline 
model 

References 
consulted 

Specifications 
Latent 
dimension 

Hidden 
layers 

Units/ layer 
(encoder) 

Units/ layer 
(decoder) 

Activation 
functions 

Standalone 
GMM –– 

Full-rank covariance matrix, 1 component (applies to all other instances of GMMs 
used in this study)  

PCA-GMM –– 3 principal components 
DAE-GMM 
(noise = 0.3) Zong et al., 2018 16 2 Linear (32, 16) Linear (16, 32) 

ReLU 

VAE Chettri et al., 2020 3 3 
Conv1D (16, 8), 
Linear (128) 

Linear (128, 24), 
ConvTranspose1D 
(16, 1) 

ReLU, 
Sigmoid 
(final) 

GRU-GMM Zhu et al., 2023 –– 3 GRU (256) –– 

Table 2. Specifications of models tested with our system 

These are namely – a standalone GMM; Principal Component Analysis (PCA) and a denoising 

autoencoder (DAE) each combined with a GMM; a variational autoencoder (VAE), which is a 

probabilistic autoencoder; and a GRU-GMM, whose recurrent architecture explicitly models 
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temporal dependencies to cope with time-series data. They were specifically chosen to decide if 

our CAE module could be substituted with a more effective alternative, entirely left out (GMM), 

or the whole model replaced by something else altogether (VAE), the proviso being that the 

alternative model should produce output no less objectively interpretable than the CAE-GMM’s.  

Procedure and Metrics 

The architectures were evaluated on the same test set that consisted of 24 normal and 24 anomalous 

grinding runs and did not overlap with the validation set referred to above. However, we varied 

the size of the training set, training each architecture in turn on 10, 20, 40, 100 and 200 normal 

grinding runs to yield five models per architecture.  

We started by preprocessing the recordings as detailed in the ‘Data Preprocessing’ section above. 

Before being passed to the models, each feature was normalised relative to itself, the test data 

being normalised using the parameters of the training data to avoid leakage.  

As our dataset is highly imbalanced, with only around 10% of data points representing the 

anomalous class, we use precision, recall and F2-score as our metrics. The last gives recall a weight 

four times that of precision, as we deemed false negatives more serious than false positives: 

F/ = (1	 +	2/) ⋅
Precision ⋅ Recall

2/ ⋅ Precision + Recall
 

These metrics were computed for each architecture on the small sample sizes stated above to find 

out how scalable each is. In addition, we measured the total time they took on an NVIDIA Tesla 

P100 PCIe 16 GB graphics processing unit (GPU) to complete training, and the mean inference 

time on all six sample sizes as a proxy for their computational efficiency and real-time capabilities. 
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Results and Interpretation 

As Table 3 shows, all models are suited for real-time use, with inference times from 0.21 to 0.24s: 

Model Training 
Sample Size 

Precision Recall F2-Score Total  
Training Time 

Mean Inference  
Time (s) 

CAE-GMM 10 0.522 1.000 0.845 23 min 58 s 0.231 
20 0.522 1.000 0.845 
40 0.827 1.000 0.960 
100 1.000 1.000 1.000 
200 1.000 1.000 1.000 

GMM 10 0.667 1.000 0.909 33 min 54 s 0.215 
20 0.649 1.000 0.902 
40 0.632 1.000 0.896 
100 1.000 1.000 1.000 
200 1.000 1.000 1.000 

PCA-GMM 10 0.667 1.000 0.909 30 min 56 s 0.224 
20 0.649 1.000 0.902 
40 0.632 1.000 0.896 
100 1.000 1.000 1.000 
200 1.000 1.000 1.000 

DAE-GMM 10 0.533 1.000 0.851 51 min 23 s 0.232 
20 0.706 1.000 0.923 
40 0.686 1.000 0.916 
100 1.000 0.833 0.862 
200 1.000 0.000 0.000 

VAE 
 

10 0.333 0.042 0.051 28 min 9 s 0.213 
20 0.333 0.042 0.051 
40 1.000 0.042 0.051 
100 1.000 0.042 0.051 
200 1.000 0.042 0.051 

GRU-GMM 
 

10 1.000 1.000 1.000 1 h 7 min 47 s 0.212 
20 1.000 1.000 1.000 
40 1.000 0.667 0.714 
100 1.000 1.000 1.000 
200 1.000 0.000 0.000 

Table 3. Results of our model comparison 

Of our six candidate models, the CAE-GMM has the shortest training time, 17.4% shorter than the 

next-best-performing model. This is probably testament to how effective the CAE module is in 

decorrelating the data for learning by the GMM. However, despite having longer training times, 

the standalone GMM and PCA-GMM had equally stable improvements in their F2-scores with 

increasing sample size in a low-data regime, and marginally lower inference times than the CAE-
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GMM. This demonstrates that our objectively interpretable system performs optimally on the 

simulated anomaly data with these three relatively simple models, and which model is preferable 

would depend on user requirements, the specific dataset and practical constraints. 

By contrast, the VAE consistently yielded low F2-scores. Also, the DAE-GMM and GRU-GMM, 

despite outperforming our CAE-GMM at sample sizes below 40, were unable to identify any 

simulated anomalies at 200 samples (F2 = 0), suggesting these architectures are inherently 

unstable. This last point makes clear that recurrent architectures considering temporal 

dependencies are for our purposes not inherently superior to simpler feedforward alternatives. 

Conclusion 

In the foregoing, we introduced an objectively interpretable Gaussian mixture model (GMM)-

based framework for visualising anomalies in grinding processes, with significant implications for 

fault diagnosis. Splitting acoustic emissions (AE) and electrical current (EC) recordings into 50-

ms segments and learning the distribution of three features (AE variance, AE energy, EC energy) 

from normal data, our system identifies significant deviations as anomalies using predefined 

thresholds. A dashboard visualises and colour-codes these anomalies, which makes them easily 

recognisable. As simulated roller failure yielded a consistent visual signature, our dashboard could 

also potentially expedite fault diagnosis. Requiring only modest numbers of normal samples for 

training and attaining optimal performance when coupled with relatively simple models like a 

convolutional autoencoder-GMM, our framework is easily adaptable to different applications. 

We will however end with some of its limitations. First, less linearly separable data, preferably 

actual data representing more anomaly types, is needed to determine how far our visualisations 



 Objectively Interpretable Real-Time Fault Diagnosis for Time-Series Data 
  

Workshop on Information Technology and Systems, Bangkok, Thailand, 2024  14 

could aid fault diagnosis. Next, although the small number of input features was intended to 

optimise explainability and efficiency, more features could be incorporated for greater robustness 

to novel anomalies, feature weights being estimated using existing techniques like SHAP. 

Additional desiderata include enhancing robustness to noise in the training data and using a 

dedicated channel for each input feature, all of which we will leave to future work. Despite these 

limitations, our system’s objective visual explainability and implications for both diagnosis and 

predictive maintenance render it superior to existing alternatives for fault detection. 
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