Vortragsankündigung

"Building a Social Network for Success"

Speaker: Prof. Dr. Florian Stahl (Universität Mannheim)
When? 11.12.2015, 10:15
Where? Room 0.01, Building C3 1

Abstract

This paper proposes a framework for studying how a brand, firm, or an individual can use networking activities to build up a social network and drive success. Using data from ego networks of music artists, the paper models how artists can enhance their social networking presence and stimulate relationships between fans to achieve long-term benefits in terms of music plays. The authors use a Bayesian modeling framework to model the heterogeneous and dynamic impact of networking activities on network structure and on music popularity, while relying on instrumental variables from another online social network to handle potential endogeneity. The results imply that artists can shape network structure via marketing activities and can thereby achieve a long-term impact on success that far exceeds the direct and short-term impact in magnitude. Specifically, improving the density of ego-networks enables long-term effects over and above those that stem from growth in network size. Furthermore, the relative effectiveness of activities and the efficient allocation of scarce resources can differ between the short- and the long-term.

Florian Stahl joined the Department of Business Administration at the University of Mannheim, Germany in Fall 2013, as a Professor of Marketing. Florian Stahl's research interests are primarily in empirical quantitative marketing, business economics and information systems research. Specifically, his research addresses business related questions of the digital economy and, in particular, of online social networks and social media. Further research areas of Florian Stahl are customers' brand and product switching behavior, consumers' intertemporal choice and discounting of future benefits, as well as pricing and sampling of (digital) products. Methodically his research is based on empirical modeling, applied econometrics, Bayesian modeling and experimental studies (laboratory as well as field experiments).