Product-Service Information Systems – Übung 3

Univ.-Prof. Dr.-Ing. Wolfgang Maass

Chair in Economics – Information and Service Systems (ISS)
Saarland University, Saarbrücken, Germany
“The development of a new service is usually characterized by trial and error. Developers translate a subjective description of a need into an operational concept that may bear only a remote resemblance to the original idea. No one systematically quantifies the process or devises tests to ensure that the service is complete, rational, and fulfills the original need objectively.” (Shostack, 1984, p. 133)

“A service blueprint allows a company to explore all the issues inherent in creating or managing a service.” (Shostack, 1984, p. 135)

Service blueprint - capturing service design in a visual diagram (like building)

“Service blueprinting, which started as an entirely manual process, has been automated by companies to provide “living blueprints” accessible to key parties online […].” (Bitner et al., 2010, p. 210).
Customer actions

- All steps that customers take as part of the service delivery process
- Depicted chronologically
- Customers central to creation of blueprint – laid out first
- All other activities support value proposition offered to or co-created with customer

Onstage / visible contact employee actions

- Separated from customers by line of interaction
- Frontline contact employees; face-to-face encounter or also self-service technology

(Bitner et al., 2008)
③ Backstage / invisible contact employee actions
- Everything that appears above line of visibility seen by customer; everything below is invisible
- Activities by contact employees that involve non-visible interaction with customers (e.g., telephone call) or preparation for serving customer

④ Support processes
- Separated from contact employees by internal line of interaction
- Activities carried out by individuals and units within company who are not contact employees

⑤ Physical evidence
- Tangibles that customers are exposed to that can influence their quality perceptions

(Bitner et al., 2008)
Exemplary Blueprint: Overnight Hotel Stay Service

Physical Evidence
- Ad/Website
- Hotel exterior
- Parking
- Cart for bags
- Employee dress
- Desk
- Paperwork
- Lobby
- Key
- Elevators
- Hallways
- Room
- Cart for bags
- Employee dress
- Menu
- Delivery tray
- Food appearance
- Food
- Room
- Amenities
- Bathroom
- Bill
- Lobby
- Hotel exterior
- Parking

Customer Actions
- Make reservation
- Arrive at hotel
- Give bags to bellperson
- Check in
- Go to room
- Receive bags
- Call room service
- Receive food
- Sign/tip
- Eat
- Sleep/shower
- Process checkout

Line of Interaction

Line of Visibility

Line of Internal Interaction

Support Processes
- Reservation system
- Registration system
- Prepare food
- Registration system

(Bitner et al., 2008, pp. 76)
How to design a service blueprint?

(1) **Identifying processes**
- Articulating service process or subprocess to be blueprinted
- Defining segment of customers in focus
- Specifying actions of customers as foundation – “When does the service start and stop from a customer’s point of view?”
- Defining contact employees actions, onstage and backstage
- Defining support processes
- Linking customers with contact employee activities and to needed support functions
- Adding physical evidences

(2) **Isolating fail points**
- build (fail-safe) sub processes to **correct possible errors**

(Shostack, 1984, p. 135)
Exhibit I Blueprint for a Corner Shoeshine

<table>
<thead>
<tr>
<th>Standard execution time</th>
<th>Brush shoes</th>
<th>Apply polish</th>
<th>Buff</th>
<th>Collect payment</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 minutes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total acceptable execution time</th>
<th>30 seconds</th>
<th>30 seconds</th>
<th>45 seconds</th>
<th>15 seconds</th>
</tr>
</thead>
</table>

- **Fail point**
 - Wrong color wax

- **Selected and purchase supplies**
 - Not seen by customer but necessary to performance

- **Line of visibility**
 - Facilitating products
- **Facilitating services and products**

(Shostack, 1984, p. 135)
(3) Establishing time frame
- Consideration of execution time of service as major cost determinant
- Calculating maximum of deviation

(4) Analyzing profitability
- Quantifying costs of delay
- Establishment of time-of-service-execution standard to measure performance and control uniformity and quality
- Serves as model for distribution of service

(Shostack, 1984, p. 135)
References

Univ.-Prof. Dr.-Ing. Wolfgang Maass

Chair in Information and Service Systems
Saarland University, Germany